Optimal Rank-Based Tests for Common Principal Components
نویسندگان
چکیده
This paper provides optimal testing procedures for the m-sample null hypothesis of Common Principal Components (CPC) under possibly non Gaussian and heterogenous elliptical densities. We first establish, under very mild assumptions that do not require finite moments of order four, the local asymptotic normality (LAN) of the model. Based on that result, we show that the pseudo-Gaussian test proposed in Hallin et al. (2010a) is locally and asymptotically optimal under Gaussian densities. We also show how to compute its local powers and asymptotic relative efficiencies (AREs). A numerical evaluation of those AREs, however, reveals that, while remaining valid, this test is poorly efficient away from the Gaussian. Moreover, it still requires finite moments of order four. We therefore propose rank-based procedures that remain valid under any possibly heterogenous m-tuple of elliptical densities, irrespective of any moment assumptions—in elliptical families, indeed, principal components naturally can be based on the scatter matrices characterizing the density contours, hence do not require finite variances. Those rank-based tests are not only validity-robust in the sense that they survive arbitrary elliptical population the Sonderforschungsbereich " Statistical modelling of nonlinear dynamic processes " (SFB 823) of the Deutsche Forschungsgemeinschaft. Marc Hallin and Davy Paindaveine are also members of ECORE, the association between CORE and ECARES. 1 2 Hallin, Paindaveine and Verdebout densities: we show that they also are efficiency-robust, in the sense that their local powers do not deteriorate under non-Gaussian alternatives. In the homogeneous case, the normal-score version of our tests uniformly dominates, in the Pitman sense, the optimal pseudo-Gaussian test. Theoretical results are obtained via a nonstandard application of Le Cam's methodology in the context of curved LAN experiments. The finite-sample properties of the proposed tests are investigated through simulations.
منابع مشابه
Optimal Rank-based Testing for Principal Components
This paper provides parametric and rank-based optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudo-Gaussian robustifications by Tyler (1981, 1983) and Davis (1977), with which their Gaussian versions are shown to coincide, asymptotically, under ...
متن کاملTheory and Applications for Time Series Analysis
We construct parametric and rank-based optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudo-Gaussian robustifications by Davis (1977) and Tyler (1981, 1983), with which their Gaussian versions are shown to coincide, asymptotically, under Gaussia...
متن کاملPredicting the Young\'s Modulus and Uniaxial Compressive Strength of a typical limestone using the Principal Component Regression and Particle Swarm Optimization
In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing thes...
متن کاملA Correlation Rank Determinator for Princip al Components
A new statistic, defined as Ro(k) = s(k)/ -.Jsr+ ... + sE {s(k) denoting the k-th singular value of data matrix}, is proposed for assessing the significance of individual components in principal-components analysis (PCA). Ro was shown to be the correlation coefficient of the prediction from the k-th principal component to the original data. The common significance test on Ro was applied as a se...
متن کاملRobust Transfer Principal Component Analysis with Rank Constraints
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the chall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011